Python

Python Dictionary with Examples

1. Introduction

This is an article about dictionaries in Python. A dictionary is a collection of unique key-value pairs.

2. Dictionary – Python

2.1 Prerequisites

For windows or non-Windows operating systems requires an above version of 3.X. Pycharm is a popular IDE (Integrated Development Environment) that facilitates the development of python scripts with such features as Intellisense or auto-complete and allows for syntax checking and script execution. Other IDEs include Microsoft Visual Code and Eclipse.

2.2 Download

Python 3.6.8 can be downloaded from https://www.python.org/downloads/. Pycharm is available at https://www.jetbrains.com/pycharm/download.

2.3 Setup

2.3.1 Python Setup

In order to install Python you need to execute the package or the executable.

2.4 IDE

2.4.1 Pycharm Setup

Pycharm package or installable needs to be executed to install Pycharm.

2.5 Launching IDE

2.5.1 Pycharm

Launch the Pycharm and start creating a pure python project named HelloWorld. The screen shows the project creation.

python dictionary - Pycharm Create project

The project settings are set on the next screen as shown below.

Python vs Java - Pycharm Project Settings

The welcome screen of the Pycharm application comes up with the progress as indicated below.

python dictionary - pycharm

You can create a Hello.py and execute the python file by selecting the Run menu.

python dictionary - hello world

The next script prints “Hello World” when the Python script file runs.

Pycharm Python Execution

2.6 What is a dictionary?

You can use a dictionary for storing a set of data items. It has keys that are used to associate items with it.

  • Given a key, the dictionary will retrieve the associated item.
  • These keys can be of any data type: strings, integers, or objects.
  • Where we need to sort a list, an element value can be found using its key.
  • Add, remove, modify, and lookup operations are possible on this collection.
  • A dictionary is similar to other data structures, such as hash function and hashmap.
  • The key/value store is used in distributed caching and in-memory databases.
  • Dictionary data structures are used in the following streams like Phone directories, Router tables in networking, Pagetables in operating systems, Symbol tables in compilers, and Genome maps in biology.

2.7 Defining a Dictionary

You can define the dictionary by using the dict() function or curly braces {}.

Defining Dictionary in Python

Example_Dict = {}
print("Empty Example_Dictionary: ")
print(Example_Dict)

You can execute the above code using the command below:

Execution Command

python3 Example_Dict.py

The output of the above code have this output:

Execution Output

apples-MacBook-Air:python_data_structures bhagvan.kommadi$ python3 Example_Dict.py 
Empty Example_Dictionary: 
{}

2.8 Dictionary comprehensive

The adjective form for the word comprehensive, stands from the meaning that, this will include everything that is needed or is relevant. As a result a comprehensive form means a compact style of writing some code for iterating/filtering/transforming a dictionary or a list.

Using comprehensive style it will be easy for the developers to read your code and will help you to keep it simple. The most important benefits of using a comprehensive style is to replace the for loops and lambda functions.

# defining a comprehensive syntax
new_dict = [expression for item in iterable <multiple if condition == True>]
# defining a dictionary
Example_Dict = {0: 'JavaCodeGeeks', 1: 'Like', 2: 'Dictionary', 3: 'comprehensive', 4: 'Follow', 5: 'next',
                6: 'examples'}

print('Accessing all keys from dictionary:')
print(Example_Dict.keys())

print('Accessing all values from dictionary:')
print(Example_Dict.values())

print('Accessing all items from dictionary:')
dict1_items = {k: v for (k, v) in Example_Dict.items()}
print(dict1_items)

print('Change the value from dictionary through comprehensive style:')
dict1_items = {k: v*2 for (k, v) in Example_Dict.items()}
print(dict1_items)

Output for the above code:

Accessing all keys from dictionary:
dict_keys([0, 1, 2, 3, 4, 5, 6])
Accessing all values from dictionary:
dict_values(['JavaCodeGeeks', 'Like', 'Dictionary', 'comprehensive', 'Follow', 'next', 'examples'])
Accessing all items from dictionary:
{0: 'JavaCodeGeeks', 1: 'Like', 2: 'Dictionary', 3: 'comprehensive', 4: 'Follow', 5: 'next', 6: 'examples'}
Change the value from dictionary through comprehensive style:
{0: 'JavaCodeGeeksJavaCodeGeeks', 1: 'LikeLike', 2: 'DictionaryDictionary', 3: 'comprehensivecomprehensive', 4: 'FollowFollow', 5: 'nextnext', 6: 'examplesexamples'}

Process finished with exit code 0

Comprehensive syntax with if, if else statements:

# defining a comprehensive syntax
new_dict = [<value> if 'true' else <another value> for item in iterable <multiple if condition == True>]
# adding if condition in the comprehensive style
Example_Dict = {0: 'JavaCodeGeeks', 1: 'Like', 2: 'Dictionary', 3: 'comprehensive', 4: 'Follow', 5: 'next',
                6: 'examples'}

dict1_items = {k: v for (k, v) in Example_Dict.items() if v.startswith('c')}
print('Print elements from dictionary where value starts with \'c\' letter')
print(dict1_items)

dict1_items = {k: v for (k, v) in Example_Dict.items() if v.startswith('J') if v.endswith('s')}
print('Print elements from dictionary where value starts with \'J\' and ends with \'s\' letter')
print(dict1_items)

dict1_items = {k: ('ends with a vowel' if v.endswith('e') else 'not ends with a vowel')
               for (k, v) in Example_Dict.items()}
print('Print elements from dictionary where value ends with vowel \'e\'')
print(dict1_items)

Output for the above code:

Print elements from dictionary where value starts with 'c' letter
{3: 'comprehensive'}
Print elements from dictionary where value starts with 'J' and ends with 's' letter
{0: 'JavaCodeGeeks'}
Print elements from dictionary where value ends with vowel 'e'
{0: 'not ends with a vowel', 1: 'ends with a vowel', 2: 'not ends with a vowel', 3: 'ends with a vowel', 4: 'not ends with a vowel', 5: 'not ends with a vowel', 6: 'not ends with a vowel'}

Process finished with exit code 0

2.9 Accessing Dictionary Values

You can access the dictionary values by key name. You can use [] square brackets to access the value of any key as shown below:

Accessing Dictionary Values in Python

Example_Dict = {}
print("Empty Example_Dictionary: ")
print(Example_Dict)
Example_Dict[0] = 'JavaCodeGeeks'
Example_Dict[2] = 'Like'
Example_Dict[3] = 2
print("\nExample_Dictionary will be like below after adding 3 elements: ")
print(Example_Dict)
print(Example_Dict[3])

You can execute the above code using the command below:

Execution Command

python3 Example_Dict.py

The output of the above code have this output:

Execution Output

apples-MacBook-Air:python_data_structures bhagvan.kommadi$ python3 Example_Dict.py 
Empty Example_Dictionary: 
{}
 
Example_Dictionary will be like below after adding 3 elements: 
{0: 'JavaCodeGeeks', 2: 'Like', 3: 2}
2

2.10 Dictionary Keys vs. List Indices

Dictionary values can be accessed by keys. Key-value pairs are saved in the dictionary. A list is a collection of ordered elements that are used to persist a list of items. Unlike array lists, these can expand and compress dynamically. You can use Lists as a base for other data structures, such as stack and queue. You can also use them to store lists of users, car parts, ingredients, to-do items, and various other such elements. Lists are the commonly data structures that developers are using. They were first introduced in the lisp programming language.

Defining Dictionary in Python

Example_Dict = {}
print("Empty Example_Dictionary: ")
print(Example_Dict)
Example_Dict[0] = 'JavaCodeGeeks'
Example_Dict[2] = 'Like'
Example_Dict[3] = 2
print("\nExample_Dictionary will be like below after adding 3 elements: ")
print(Example_Dict)

Example_Dict['Value_set'] = 4, 5, 7
print("\nExample_Dictionary will be like below after adding 3 elements: ")
print(Example_Dict)

Example_Dict[2] = 'Hello'
print("\nUpdated key value for second element: ")
print(Example_Dict[2])

# List Definition
Example_List = []
print("Initial blank Example_List: ")
print(Example_List)


Example_List.append(1)
Example_List.append(2)
Example_List.append(7)
print("\nExample_List after Addition of Three elements: ")
print(Example_List)

print(Example_List[1])

You can execute the above code using the command below:

Execution Command

python3 Example_Dict_List.py

The output of the above code is:

Dictionary vs List

apples-MacBook-Air:python_data_structures bhagvan.kommadi$ python3 Example_Dict.py 
Empty Example_Dictionary: 
{}
 
Example_Dictionary will be like below after adding 3 elements: 
{0: 'JavaCodeGeeks', 2: 'Like', 3: 2}
 
Example_Dictionary will be like below after adding 3 elements: 
{0: 'JavaCodeGeeks', 2: 'Like', 3: 2, 'Value_set': (4, 5, 7)}
 
Updated key value for second element: 
{0: 'JavaCodeGeeks', 2: 'Hello', 3: 2, 'Value_set': (4, 5, 7)}
 
Hello

Initial blank Example_List: 
[]

Example_List after Addition of Three elements: 
[1, 2, 7]
2

2.11 Example: Use of Continue Statement in processing dictionary

The following is an example of using a continue Statement in the processing of a dictionary, in this case, ages. The continue statement will allow the key (along with its value) of the dictionary to bypass processing the remainder of the for loop if it is not in a desired key list ( lines 40-42 ).

from datetime import datetime

data = [{"sport":     "hockey", "Player Name":     "Joseph Offsider", "birthdate": "10/10/1996"},
        {"sport":     "soccer", "Player Name":    "Derek CornerKick", "birthdate": "10/13/1995"},
        {"sport":     "hockey", "Player Name":        "William Puck", "birthdate":  "2/19/1986"},
        {"sport":     "hockey", "Player Name":          "Max Goalie", "birthdate":   "8/9/1992"},
        {"sport":   "baseball", "Player Name":         "Simon Hoops", "birthdate":  "4/19/1996"},
        {"sport":     "hockey", "Player Name":         "Larry Icing", "birthdate":  "1/25/1980"},
        {"sport": "basketball", "Player Name":           "Carl Foul", "birthdate":  "3/12/1978"},
        {"sport":       "golf", "Player Name":     "Jack ParMeister", "birthdate": "12/30/1978"},
        {"sport":     "tennis", "Player Name":      "Sarah SetMatch", "birthdate":  "8/25/1977"},
        {"sport":   "football", "Player Name":     "David Touchdown", "birthdate":  "5/29/1977"},
        {"sport":     "hockey", "Player Name":     "Wayne Red Wings", "birthdate":  "1/24/1982"},
        {"sport":     "soccer", "Player Name":    "Miles Midfielder", "birthdate":  "1/17/1985"},
        {"sport": "basketball", "Player Name":        "Aaron Dunker", "birthdate":  "5/20/1986"},
        {"sport":   "football", "Player Name":   "Peter Sackmeister", "birthdate":  "7/24/1998"},
        {"sport":       "golf", "Player Name":         "Frank Bogie", "birthdate":  "9/22/1992"},
        {"sport":     "hockey", "Player Name": "Franz FaceoffArtist", "birthdate":   "9/3/1987"},
        {"sport":   "baseball", "Player Name":  "Benny TriplePlayer", "birthdate":  "12/1/1987"},
        {"sport":     "hockey", "Player Name":     "Colin Powerplay", "birthdate": "12/12/1995"},
        {"sport":     "tennis", "Player Name":      "Sylvia Doubles", "birthdate":  "10/2/1982"},
        {"sport": "basketball", "Player Name":  "Steve AssistLeader", "birthdate": " 7/27/1997"},
        {"sport":       "golf", "Player Name":         "Calem Eagle", "birthdate": " 1/10/1992"},
     ]
today = datetime.now()
ages = {"hockey": [0, 0], "baseball": [0, 0], "basketball": [0, 0], "football": [0, 0], "golf": [0, 0], "soccer": [0, 0]}

for item in data:
    if item['sport'] in ages:
       parts = item['birthdate'].split('/')
       yearDiff = today.year - int(parts[2])
       if int(parts[0]) > today.month: 
           yearDiff -= 1
           monthDiff = today.month + 12 - int(parts[0])
       else:
           monthDiff = int(parts[0]) - today.month
       ages[item['sport']][0] += yearDiff * 12 + monthDiff
       ages[item['sport']][1] += 1

for key in ages:
    if key not in ['baseball', 'basketball', 'football', 'hockey']:
         continue
    averageAgeInMonths = round(ages[key][0] / ages[key][1])
    print(f'Average age for {ages[key][1]} {key} players is {averageAgeInMonths // 12} years {averageAgeInMonths % 12} months')

2.12 Restrictions on Dictionary Keys

Dictionary keys cannot be polymorphic. You will not allow to have duplicates key. They are immutable. Its keys are case-sensitive. Key with different cases but same spelling are different.

2.13 Operators and Built-in Functions

Python has the following operators for Dictionary:

  • dict[key]: This operator is used to get the value based on the given key from the dictionary.
  • dict[key] = pairvalue: You can use this operator to set the value based on the given key from the dictionary.
  • del dict[key]: This operator  is used to delete the key and its paired value from the dictionary.

The table below shows the built-in functions for Dictionary:

FunctionUsage
clear()This function removes all items from the dictionary.
copy()This function returns a shallow copy of the dictionary.
fromkeys(seq[, v])This function returns a new dictionary with keys from seq and value equal to v (defaults to None).
get(key[,d])This function returns the value of the key. If the key does not exist, returns d (defaults to None).
items()This function returns a new object of the dictionary’s items in (key, value) format.
keys()This function returns a new object of the dictionary’s keys.
pop(key[,d])This function removes the item with the key and returns its value or d if the key is not found. If d is not provided and the key is not found, it raises KeyError.
popitem()This function removes and returns a key-value pair. It raises KeyError if the dictionary is empty.
setdefault(key[,d])This function returns the corresponding value if the key is in the dictionary. If not, it inserts the key with a value of d and returns d (defaults to None).
update([other])This function updates the dictionary with the key-value pairs from other, overwriting existing keys.
values()This function returns a new object of the dictionary’s values
Built-In Functions

2.14 Order vs Unorder

In Python we have two types of data structure in which we can store the information.

These types are: order and unorder. This means that the information that is in the lists are in the order we insert.

Order data structures in Python are:

  • Tuples
  • String
  • List

Unorder data structures in Python are:

Examples of data structure with order vs unorder:

import sys

letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

string_result = str(letters)
list_result = list(letters)
tuples_result = tuple(letters)
sets_result = set(letters)
dict_result = {value: value for value in list_result}

print('Print python version')
print(sys.version)
print('Printing the result for each data structure')
print('Print the string letters')
print(string_result)

print('Print list from the string letters')
print(list_result)

print('Print tuples from string letters')
print(tuples_result)

print('Print sets from string letters')
print(sets_result)

print('Print dictionary from string letters')
print(dict_result)

Output for the above code:

Print python version
3.9.1 (tags/v3.9.1:1e5d33e, Dec  7 2020, 17:08:21) [MSC v.1927 64 bit (AMD64)]
Printing the result for each data structure
Print the string letters
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
Print list from the string letters
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
Print tuples from string letters
('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z')
Print sets from string letters
{'l', 'u', 'A', 'E', 'c', 'j', 'k', 'q', 'v', 'w', 'K', 'F', 'U', 'W', 'C', 'R', 'p', 'o', 'e', 'r', 't', 'B', 'L', 'N', 'm', 'd', 'J', 'a', 'H', 'O', 'g', 'i', 'n', 'P', 'V', 's', 'x', 'D', 'y', 'M', 'f', 'b', 'I', 'S', 'Y', 'T', 'G', 'X', 'h', 'Z', 'Q', 'z'}
Print dictionary from string letters
{'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', 'e': 'e', 'f': 'f', 'g': 'g', 'h': 'h', 'i': 'i', 'j': 'j', 'k': 'k', 'l': 'l', 'm': 'm', 'n': 'n', 'o': 'o', 'p': 'p', 'q': 'q', 'r': 'r', 's': 's', 't': 't', 'u': 'u', 'v': 'v', 'w': 'w', 'x': 'x', 'y': 'y', 'z': 'z', 'A': 'A', 'B': 'B', 'C': 'C', 'D': 'D', 'E': 'E', 'F': 'F', 'G': 'G', 'H': 'H', 'I': 'I', 'J': 'J', 'K': 'K', 'L': 'L', 'M': 'M', 'N': 'N', 'O': 'O', 'P': 'P', 'Q': 'Q', 'R': 'R', 'S': 'S', 'T': 'T', 'U': 'U', 'V': 'V', 'W': 'W', 'X': 'X', 'Y': 'Y', 'Z': 'Z'}

Process finished with exit code 0

As we can see in the above output, some of the data structures keep the initial order of insertion. The only difference we can see is the dictionary data structure. This is an ordered structure based on the insertion order for the running Python version.

4. Download the Source Code

Download
You can download the full source code for this article here: Python Dictionary with Examples

Last updated on April 11th, 2022

Bhagvan Kommadi

Bhagvan Kommadi is the Founder of Architect Corner & has around 20 years’ experience in the industry, ranging from large scale enterprise development to helping incubate software product start-ups. He has done Masters in Industrial Systems Engineering at Georgia Institute of Technology (1997) and Bachelors in Aerospace Engineering from Indian Institute of Technology, Madras (1993). He is member of IFX forum,Oracle JCP and participant in Java Community Process. He founded Quantica Computacao, the first quantum computing startup in India. Markets and Markets have positioned Quantica Computacao in ‘Emerging Companies’ section of Quantum Computing quadrants. Bhagvan has engineered and developed simulators and tools in the area of quantum technology using IBM Q, Microsoft Q# and Google QScript. He has reviewed the Manning book titled : "Machine Learning with TensorFlow”. He is also the author of Packt Publishing book - "Hands-On Data Structures and Algorithms with Go".He is member of IFX forum,Oracle JCP and participant in Java Community Process. He is member of the MIT Technology Review Global Panel.
Subscribe
Notify of
guest

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Back to top button