[image: ]


Hello. In this tutorial, we will talk about Docker Push.

<h2>1. What is Docker?</h2>

Docker is an open-source platform used for the containerization of applications. It allows developers to package their applications along with their dependencies, libraries, and other necessary components into a single container that can run reliably and consistently on any platform. The containerization technology provided by Docker ensures that the application behaves the same way regardless of the underlying infrastructure. Some benefits of Docker are:

<ul>
<li><strong>Portability</strong>: Docker containers can run on any platform, regardless of the underlying infrastructure. This makes it easy to move applications between development, testing, and production environments.</li>
<li><strong>Scalability</strong>: Docker allows you to quickly and easily scale your application by adding or removing containers as needed, without having to make changes to the underlying infrastructure.</li>
<li><strong>Isolation</strong>: Docker provides a high level of isolation between applications, ensuring that each container runs independently of others, without interfering with each other.</li>
<li><strong>Efficiency</strong>: Docker containers are lightweight and efficient, consuming fewer resources than traditional virtual machines. This allows you to run more applications on the same hardware.</li>
<li><strong>Consistency</strong>: Docker ensures that applications behave the same way across different environments, making it easier to test and deploy new versions of your application.</li>
<li><strong>Security</strong>: Docker provides built-in security features that help protect your applications from external threats. Docker containers are isolated from each other and the underlying infrastructure, reducing the risk of attacks.</li>
</ul>

Overall, Docker provides a powerful platform for building, testing, and deploying applications that is both efficient and reliable.

<h3>1.1 What is Docker used for?</h3>

It is used for -

<ul>
<li>For environment replication, while the code runs locally on the machine.</li>
<li>For numerous deployment phases i.e. Dev/Test/QA.</li>
<li>For version control and distributing the application’s OS within a team.</li>
</ul>

<h3>1.2 Basic Docker Terminology?</h3>

<ul>
<li><strong>Image</strong>: Representation of Docker container i.e. a JAR or WAR file in Java.</li>
<li><strong>Container</strong>: Runtime of Docker i.e. a deployed and running Docker image. For example, an executable Spring Boot jar.</li>
<li><strong>Engine</strong>: The code that manages, creates, and runs the Docker containers.</li>
<li><strong>Hub</strong>: A public developer’s registry to distribute their code.</li>
<li><strong>Repository</strong>: A collection of Docker-related images i.e. different versions of the same application.</li>
</ul>

<h3>1.3 Setting up Docker</h3>

If someone needs to go through the Docker installation, please watch <a href="https://www.youtube.com/watch?v=R-ZMkGvh-9Y" target="_blank">this</a> video.

<h2>2. Docker Push</h2>

Docker push is a command used in the Docker platform to push a Docker image to a remote registry or repository, such as Docker Hub or a private registry. When a user builds a Docker image on their local machine, it is only available on that machine. To share the image with others or deploy it on other machines, the user must push the image to a remote registry.

<h3>2.1 Importance of Docker Push in Containerization</h3>
<ul>
  <li>Docker push is a crucial component of containerization because it enables developers to easily share and distribute Docker images across different environments and systems.</li>
  <li>Using Docker push, developers can upload their Docker images to a remote registry or repository, such as Docker Hub or a private registry, making them available for others to access and use. This is particularly important in situations where multiple developers or teams are working on a project, as it allows them to collaborate more effectively by easily sharing images.</li>
  <li>Moreover, Docker push also enables the deployment of Docker images on different systems, such as cloud-based environments, without having to rebuild the images on each system. This makes it easier to deploy and manage containerized applications in distributed environments.</li>
  <li>Overall, Docker push simplifies the process of sharing and distributing Docker images, making it an important tool for containerization and DevOps practices.</li>
</ul>

<h3>2.2 How does Docker Push work?</h3>

When a user executes the 'docker push' command, Docker packages the image into layers and sends it to the specified registry, along with any associated metadata. The 'docker push' command follows these basic steps:

<ul>
  <li><strong>Authenticate</strong>: The user must first authenticate with the remote Docker registry to which they want to push their image. This is done using their Docker Hub or registry login credentials.</li>
  <li><strong>Tag the image</strong>: The user must tag the Docker image they want to push with the appropriate repository and version information. This is done using the 'docker tag' command.</li>
  <li><strong>Push the image</strong>: The user runs the 'docker push' command, which uploads the Docker image to the remote registry. The command sends the image layers to the registry, which then stores the layers and the associated metadata.</li>
  <li><strong>Image availability</strong>: Once the Docker image is successfully pushed to the remote registry, it can be accessed and used by other users and systems. Other users can pull the image from the registry using the 'docker pull' command.</li>
</ul>

In summary, Docker push works by packaging a Docker image into layers, sending it to a remote registry, and making it available for others to access and use. It simplifies the process of sharing and distributing Docker images, making it a critical tool for containerization and DevOps practices.

<h3>2.3 Benefits of using Docker push</h3>

Using Docker Push provides several benefits in containerization and DevOps practices. Some of the key benefits include:

<ul>
  <li><strong>Simplified distribution</strong>: Docker push simplifies the process of sharing and distributing Docker images, allowing developers to easily upload their images to a remote registry and make them available for others to access and use.</li>
  <li><strong>Collaborative development</strong>: Docker push enables multiple developers or teams to work on a project more effectively by allowing them to easily share Docker images. This can improve collaboration and streamline development processes.</li>
  <li><strong>Faster deployments</strong>: Docker push allows Docker images to be deployed on different systems, such as cloud-based environments, without having to rebuild the images on each system. This can speed up deployment times and improve overall application performance.</li>
  <li><strong>Version control</strong>: Docker push allows developers to maintain version control of their Docker images by uploading them to a registry and tagging them with version information. This can help developers keep track of changes and ensure that the correct image is being used in production.</li>
  <li><strong>Flexibility</strong>: Docker push allows developers to use different registries for their Docker images, including public registries like Docker Hub and private registries. This provides flexibility and control over how Docker images are shared and distributed.</li>
</ul>

Overall, Docker push is an important tool for containerization and DevOps practices that can simplify development processes, improve collaboration, and streamline application deployments.

<h3>2.4 Docker push example</h3>

<h4>2.4.1 Requirements for Docker Push</h4>

<ul>
  <li>A Docker image: You need to have a Docker image that you want to push to a registry. This image should be built and tagged appropriately.</li>
  <li>Docker Hub account (optional): If you want to push your Docker image to Docker Hub, you need to have a Docker Hub account. You can create a free account on the Docker Hub website.</li>
  <li>Access to a remote Docker registry: If you want to push your Docker image to a remote registry other than Docker Hub, you need to have access to the registry and the necessary permissions to push images to it.</li>
  <li>Authentication credentials: You need to have valid authentication credentials to push images to a registry. For Docker Hub, you can use your Docker Hub login credentials. For other registries, you may need to obtain specific credentials.</li>
  <li>Docker CLI: You need to have the Docker command-line interface (CLI) installed on your local machine to use the 'docker push' command. The Docker CLI is available for Windows, Mac, and Linux operating systems.</li>
</ul>

<h4>2.4.2 Example</h4>

Assuming you have a Docker image named 'my-image' with the tag 'latest' and you want to push it to your Docker Hub account, the steps would be:

<ul>
<li>Authenticate with Docker Hub:</li>
</ul>

<span style="text-decoration: underline;"><em>Syntax</em></span>

<pre class="brush:plain; wrap-lines:false;">
docker login
</pre>

This will prompt you to enter your Docker Hub login credentials.

<ul>
<li>Tag the Docker image with your Docker Hub username and the repository name:</li>
</ul>

<span style="text-decoration: underline;"><em>Syntax</em></span>

<pre class="brush:plain; wrap-lines:false;">
docker tag my-image:latest myusername/my-repo:latest
</pre>

Replace <code>myusername</code> with your Docker Hub username and <code>my-repo</code> with the name of your repository.

<ul>
<li>Push the Docker image to Docker Hub:</li>
</ul>

<span style="text-decoration: underline;"><em>Syntax</em></span>

<pre class="brush:plain; wrap-lines:false;">
docker push myusername/my-repo:latest
</pre>

This will upload the 'my-image' Docker image with the 'latest' tag to the 'my-repo' repository in your Docker Hub account. Other users can now pull this image using the command:

<span style="text-decoration: underline;"><em>Syntax</em></span>

<pre class="brush:plain; wrap-lines:false;">
docker pull myusername/my-repo:latest
</pre>

<h3>2.5 Docker Push best practices</h3>

Here are some best practices for using Docker push:

<ul>
  <li>Use a private registry: Consider using a private registry for sensitive or proprietary Docker images to maintain control over who has access to them.</li>
  <li>Tag Docker images with version information: Tagging Docker images with version information can help maintain version control and ensure that the correct image is being used in production.</li>
  <li>Use descriptive tags: Use descriptive tags that indicate the contents and purpose of the Docker image to make it easier for others to use and understand.</li>
  <li>Keep images small: Keep Docker images as small as possible to improve performance and reduce storage requirements. Use multi-stage builds and only install necessary dependencies to minimize image size.</li>
  <li>Monitor image vulnerabilities: Use tools like Docker Security Scanning or other vulnerability scanners to regularly monitor Docker images for potential security vulnerabilities.</li>
  <li>Automate image builds and pushes: Use automation tools like Jenkins, GitLab CI/CD, or AWS CodePipeline to automate the building and pushing of Docker images to registries.</li>
</ul>

That concludes this tutorial, and I hope that it provided you with the information you were seeking. Enjoy your learning journey, and don't forget to share!
												
<h2>3. Conclusion</h2>

In conclusion, Docker push is a crucial component of containerization that enables developers to easily share and distribute Docker images across different environments and systems. By using Docker push, developers can upload their Docker images to a remote registry, making them available for others to access and use. Docker push also enables the deployment of Docker images on different systems without having to rebuild the images on each system, making it easier to deploy and manage containerized applications in distributed environments.

<h2>4. Summary</h2>

Docker push is a command used to upload Docker images to a remote registry or repository. It enables easy sharing and distribution of Docker images across different environments and systems, simplifying the process of collaborative development. By allowing developers to deploy Docker images on different systems without having to rebuild the images on each system, it can speed up deployment times and improve overall application performance. Authentication credentials and access to a remote Docker registry are required to use Docker push, along with a Docker image and the Docker CLI installed on the local machine. Proper use of Docker push best practices can enhance the security, reliability, and scalability of Dockerized applications. You can also download the commands used in this tutorial from the <a href="#projectDownload">Downloads</a> section.

<h2><a name="projectDownload"></a>5. Download the Project</h2>

This was a tutorial on Docker Push.

<div class="download"><strong>Download</strong><br />You can download the full source code of this example here: </div>

<strong>Docker Push</strong>


		
image1.emf

